Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus–Rhizobium sp. NGR234 interaction

نویسندگان

  • Olivier Schumpp
  • Michèle Crèvecoeur
  • William J. Broughton
  • William J. Deakin
چکیده

Lotus japonicus, a model legume, develops an efficient, nitrogen-fixing symbiosis with Mesorhizobium loti that promotes plant growth. Lotus japonicus also forms functional nodules with Rhizobium sp. NGR234 and R. etli. Yet, in a plant defence-like reaction, nodules induced by R. etli quickly degenerate, thus limiting plant growth. In contrast, nodules containing NGR234 are long-lasting. It was found that NGR234 initiates nodule formation in a similar way to M. loti MAFF303099, but that the nodules which develop on eleven L. japonicus ecotypes are less efficient in fixing nitrogen. Detailed examination of nodulation of L. japonicus cultivar MG-20 revealed that symbiosomes formed four weeks after inoculation by NGR234 are enlarged in comparison with MAFF303099 and contain multiple bacteroids. Nevertheless, nodules formed by NGR234 fix sufficient nitrogen to avoid rejection by the plant. With time, these nodules develop into fully efficient organs containing bacteroids tightly enclosed in symbiosome membranes, just like those formed by M. loti MAFF303099. This work demonstrates the usefulness of using the well-characterized micro-symbiont NGR234 to study symbiotic signal exchange in the later stages of rhizobia-legume symbioses, especially given the large range of bacterial (NGR234) and plant (L. japonicus) mutants that are available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay of flg22-induced defence responses and nodulation in Lotus japonicus

In this study the interplay between the symbiotic and defence signalling pathways in Lotus japonicus was investigated by comparing the responses to Mesorhizobium loti, the symbiotic partner of L. japonicus, and the elicitor flg22, a conserved peptide motif present in flagellar protein of a wide range of bacteria. It was found that defence and symbiotic pathways overlap in the interaction betwee...

متن کامل

NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions.

Bacterial effector proteins delivered into eukaryotic cells via bacterial type III secretion systems are important virulence factors in plant-pathogen interactions. Type III secretion systems have been found in Rhizobium species that form symbiotic, nitrogen-fixing associations with legumes. One such bacterium, Rhizobium sp. NGR234, secretes a number of type III effectors, including nodulation ...

متن کامل

Y4lO of Rhizobium sp. strain NGR234 is a symbiotic determinant required for symbiosome differentiation.

Type 3 (T3) effector proteins, secreted by nitrogen-fixing rhizobia with a bacterial T3 secretion system, affect the nodulation of certain host legumes. The open reading frame y4lO of Rhizobium sp. strain NGR234 encodes a protein with sequence similarities to T3 effectors from pathogenic bacteria (the YopJ effector family). Transcription studies showed that the promoter activity of y4lO depende...

متن کامل

Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation

Rhizobial bacteria are known for their capacity to fix nitrogen for legume hosts. However ineffective rhizobial genotypes exist and can trigger the formation of nodules but fix little if any nitrogen for hosts. Legumes must employ mechanisms to minimize exploitation by the ineffective rhizobial genotypes to limit fitness costs and stabilize the symbiosis. Here we address two key questions about...

متن کامل

The Plant Growth Promoting Substance, Lumichrome, Mimics Starch, and Ethylene-Associated Symbiotic Responses in Lotus and Tomato Roots

Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Experimental Botany

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2009